PLZT (9/65/35) thin films on sapphire (001) substrates with thickness of 0.1 ~ 0.9 µm were prepared by a metal-organic decomposition (MOD) process. All the films present highly (110)-preferred orientation independent of the film thickness. The microstructure of the films was investigated. The influence of film thickness on optical properties of PLZT films was examined and analyzed. As the film thickness is increased, the absorption edge of the film is shifted to longer wavelength; the optical band gap Eg is increased slightly. The refractive index at 510nm determined from optical transmission spectra also shows an increasing tendency as film thickness increasing. Great stress aggregated during the film preparing process is thought to be an important reason which results in the variations of optical properties of the films with different thickness.