Diradicaloid polycyclic hydrocarbons (PHs) own unique open-shell electronic structures and exhibit potential utility in the fields of organic electronics and spintronics. Herein, we disclose precise fusion of B/O-heterocycles onto PHs for control over their electronic structures and diradical properties. We designed and synthesized four B/O-containing diradicaloid isomers that feature the fluoreno[3,2-b]fluorene and fluoreno[2,1-a]fluorene π-skeletons, respectively. The precise B/O-heterocycle fusion modes along with the changed conjugation patterns lead to their modulated electronic structures and properties, such as diradical and aromatic structures, energy levels and band gaps, as well as magnetic, electrochemical and photophysical properties. Notably, the mode A may decrease the open-shell extent, whereas the mode B can enhance the diradical nature, leading to their well-tuned diradical characters in the range of 0.46‒0.70. Moreover, the mode A stabilizes the LUMOs and the mode B obviously increases the HOMO levels, which are remarkably contributed by the B and O atoms, respectively, further giving rise to the decreased band gaps and redshifted absorptions. This study clearly illustrates the electronic effects of B/O-heterocycle fusion on PHs and gains insight into B/O-type organic diradicaloids. These findings will provide an important guideline for the design of more fascinating heteroatom-containing diradicaloids.