Abstract

Diradical polycyclic hydrocarbons (PHs) have unique open-shell structures and interesting physical properties. However, owing to high reactivity of unpaired electrons, such open-shell organic diradicaloids are usually less stable than closed-shell systems, limiting their practical applications. In this study, we report P=O-attaching of diradical PHs as a new strategy to enhance their stability while maintaining diradical properties. Three P=O-attached PHs containing the indeno[1,2-b]fluorene, fluoreno[3,2-b]fluorene and indeno[2,1-b]fluorene π-skeletons, respectively, were designed and synthesized. As theoretically and experimentally proved, two of them have the relatively large diradical characters and open-shell singlet diradical nature. In comparison to their all-carbon analogues, the attached electron-withdrawing P=O groups endow them with much lower LUMO/HOMO energy levels but preserved magnetic activities and physical properties, such as thermally accessible triplet species and multi-redox ability. Moreover, the P=O groups effectively decrease their oxidation activities and thereby lead to their remarkably excellent ambient stabilities. Thus, this P=O-attaching strategy will be applicable to other diradical PH systems and may promote the generation of stable organic diradicaloids for radical chemistry and materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call