Electronics have evolved significantly with the development of semiconductor materials and devices, with emerging areas such as organic and flexible electronics showing great promise, particularly in applications such as wearable devices and environmental sensors. Since the discovery of conducting polymers in the late 1970s, organic electronics have paved the way for innovations such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), and organic solar cells (OPVs). Recent advances have focused on nanostructuring techniques to enhance device properties, such as charge mobility and luminescence efficiency. The growing concern for sustainability has also led to the exploration of biodegradable organic electronics as a potential solution to electronic waste. This perspective briefly discusses the impact of nanostructuring on the performance of both conventional and biodegradable organic devices, exploring the challenges and opportunities associated with using alternative substrates like paper. This perspective emphasizes the importance of understanding molecular organization at the nanoscale to optimize device performance and ensure stability under practical conditions.
Read full abstract