In this study, a composite disc with Epoxy (T300) material was considered. It is possible to come across different studies to examine the stress field on disks rotating or stationary under thermal loads. Discs play a vital role in the assembly of machine parts in industry. Knowing the behavior of machine parts against temperature allows very good data to be transferred to today’s artificial intelligence world. Epoxy materials are very important today. Epoxies are made up of very strong fibers. They are used in unmanned aerial vehicles, spacecraft and the rocket industry. In addition, their maximum and minimum hardening properties, good adhesion properties and wear resistance are also quite high. In this study, an Epoxy disk (T300) subjected to linear increasing temperature was modeled. The stresses obtained on the discs were determined by different methods. As can be seen from the results, for a temperature of 150 °C, the average stress, strain and compression occurring sequentially in the inner and outer regions of the disk acts as 215.06 and –443.90 MPa. According to the results obtained, it was concluded that there are parallel increases in stresses as the temperature increases, and this can be proven by other different studies in the literature.