The fracture toughness of inelastic materials consists of an intrinsic component associated with the crack tip fracture process and a dissipative component due to bulk dissipation. Experimental characterization of the intrinsic component of fracture toughness is important for understanding the fracture mechanism and predictive modeling of the fracture behavior. Here we present an experimental study on the intrinsic toughness of a soft viscoelastic adhesive. We first obtained full-field and full-history data of the displacement and deformation fields in pure shear fracture tests using a particle tracking method. By combining these data with a nonlinear constitutive model, we extracted the intrinsic toughness through an energy balance analysis. A two-stage crack propagation behavior was observed in our fracture experiments: under monotonic loading the crack first underwent a slow propagation stage and then suddenly entered a fast propagation stage. We found that the intrinsic toughness was highly scattered for the slow propagation stage, but remained consistent for the fast propagation stage. Further examination of the fracture surface and the onset of fast propagation revealed that transition from the slow to the fast propagation stage was governed by the applied stretch and was likely due to a change in the crack tip fracture process.
Read full abstract