Abstract

The fatigue load that a material experiences and its microstructure are important factors influencing fatigue crack propagation behavior. This study employed laser scanning microscopy and electron backscatter diffraction (EBSD) technology, along with fatigue crack propagation experiments, to investigate the fatigue crack propagation behavior of 2024 aluminum alloy under varying stress ratios (R). The results showed that the stress amplitude (σp) was the main factor controlling the fatigue crack propagation life (N). Additionally, detailed characterization of the fatigue crack propagation path was conducted using crystal models and EBSD. A fatigue crack propagation model for 2024 aluminum alloy under different R-values was established based on the grain twist angle and Schmid factor. Finally, the impact of R on the crack tip shielding (Ks) was systematically analyzed, elucidating the intrinsic mapping relationship between R, microstructure, and crack propagation characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.