AbstractGermanium quantum dots embedded in silicon have been used in the past to improve the opto-electronic properties of Si based materials. The idea is to overcome the limitation of the indirect band gap of Si by a strong localization of the carriers in quantum dots. However, the Ge quantum dots provide a strong carrier confinement only for the holes, the electrons are only weakly confined in the Si. In this study we embedded the Ge quantum dots in strained Si quantum wells grown on relaxed SiGe buffer layers. The strained Si quantum wells provide a confinement of the electrons in the vicinity of the Ge dots.The structures were deposited on planar as well as on patterned substrates by molecular beam epitaxy. The structural and optical properties of the samples were analyzed using high resolution cross sectional transmission electron microscopy (TEM) as well as low temperature photoluminescence. The size of the mesa structures have been used as experimental parameter. Relaxed buffer layers grown on line shaped mesa structures show a strongly reduced dislocation density. Consequently the deep luminescence attributed to dislocations in the buffer layers is strongly reduced and pronounced photoluminescence of the quantum structures grown on top of the buffer layers can be observed.
Read full abstract