T-cell acute lymphoblastic leukemia (T-ALL) is a dangerous hematological malignancy. The trans-activation response DNA binding protein (TARDBP), an RNA/DNA binding protein, is involved in the growth and metastasis of multiple cancers. However, TARDBP has not been reported in T-ALL. It was found that TARDBP was highly expressed in pediatric T-ALL samples by microarray GSE26713 (log2 fold change >1, p < .05). Herein, TARDBP was silenced and overexpressed by lentivirus transduction in T-ALL cell lines, including Jurkat and Molt4 cells. Invitro, silencing TARDBP inhibited T-ALL cell proliferation and cycle progression and accelerated cell apoptosis, while overexpressing TARDBP induced the opposite effects. In addition, we investigated whether the β-catenin pathway could be activated by TARDBP in T-ALL cells. Moreover, XAV-939, a β-catenin inhibitor, was capable of suppressing the malignant phenotypes in TARDBP-overexpressed T-ALL cells. Invivo, TARDBP-silenced or TARDBP-overexpressed T-ALL cells were injected into mice. We found that TARDBP promoted T-ALL cell growth in the spleens and bone marrows of mice. On the basis of GSE26713, there was a significant correlation between TARDBP and mouse double minute 2 (MDM2). The RIP-PCR assay demonstrated that TARDBP bound MDM2 mRNA in T-ALL cells. The rescue experiments further revealed the roles of the TARDBP/MDM2 axis in T-ALL cell phenotypes, which was also reflected by mRNA-seq. In aggregate, we explored a promising biomarker, TARDBP, for T-ALL treatment. The underlying mechanisms might involve the interaction with MDM2 mRNA and the regulation of the β-catenin pathway.