Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a type of aggressive hematologic malignancy. It progresses quickly and it is likely to be fatal within a few months without treatment. Despite the limitations of current clinical therapies, there is an urgent need for novel and targeted therapies. To explore potential targeted therapies, molecular genetic mechanisms of T-ALL metastasis must be uncovered. However, the genes and mechanisms that mediate T-ALL metastasis are largely unknown. Recent insights into T-ALL biology have identified several genes that can be grouped into several targetable signaling pathways. The Wnt/β-catenin signaling pathway is one of the most important pathways. Our work investigated the functions of TCF1 and LEF1 in cell growth and migration mediated by the Wnt signaling pathway. We found that TCF1 and LEF1 knockdown weakly repressed T-ALL cell proliferation but distinctly impaired cell migration. T-ALL metastasis is dependent on cell migration and invasion. Our results displayed that TCF1 and LEF1 regulated T-ALL cell migration by the Wnt-dependent chemokine and cytokine-induced inflammation and cadherin signaling pathways. By transcriptionally regulating these pathways-associated genes, TCF1 and LEF1 inhibited cell adhesion and promoted cell migration and invasion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.