Let Λ be an Artin algebra with a unique non-injective indecomposable projective module. In this situation, Marczinzik conjectured that the dominant dimension of Λ agrees with its finitistic dimension. In this paper, we give a proof of a stronger statement. As a byproduct, we obtain excellent control over the finitistic dimensions of Artin algebras with two simples and positive dominant dimension, and also establish the Gorenstein symmetry conjecture for all algebras under consideration.
Read full abstract