Abstract

AbstractFor a finite-dimensional Hopf algebra $\mathsf {A}$ , the McKay matrix $\mathsf {M}_{\mathsf {V}}$ of an $\mathsf {A}$ -module $\mathsf {V}$ encodes the relations for tensoring the simple $\mathsf {A}$ -modules with $\mathsf {V}$ . We prove results about the eigenvalues and the right and left (generalized) eigenvectors of $\mathsf {M}_{\mathsf {V}}$ by relating them to characters. We show how the projective McKay matrix $\mathsf {Q}_{\mathsf {V}}$ obtained by tensoring the projective indecomposable modules of $\mathsf {A}$ with $\mathsf {V}$ is related to the McKay matrix of the dual module of $\mathsf {V}$ . We illustrate these results for the Drinfeld double $\mathsf {D}_n$ of the Taft algebra by deriving expressions for the eigenvalues and eigenvectors of $\mathsf {M}_{\mathsf {V}}$ and $\mathsf {Q}_{\mathsf {V}}$ in terms of several kinds of Chebyshev polynomials. For the matrix $\mathsf {N}_{\mathsf {V}}$ that encodes the fusion rules for tensoring $\mathsf {V}$ with a basis of projective indecomposable $\mathsf {D}_n$ -modules for the image of the Cartan map, we show that the eigenvalues and eigenvectors also have such Chebyshev expressions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call