AbstractThe Prydz Bay coast, including the Larsemann Hills, features relatively extensive bedrock exposures of interest because of the proximity to a hypothesized suture associated with Gondwana assembly. Critical units are the basement Søstrene Orthogneiss (1,126 ± 11 Ma protolith) and cover Brattstrand Paragneiss (maximum depositional age 1,023 ± 19 Ma). The two units share a polymetamorphic history with events at ~900 Ma (D1) and ~530 Ma (D2‐4). Here we present electron microprobe dates of monazite growth zones and Perple_X pseudosection models of granulite‐facies rocks from the Søstrene Orthogneiss, Brattstrand Paragneiss, and D2‐4 pegmatites of the Larsemann Hills. We propose a scenario for Cambrian metamorphism involving a peak stage at 6–7.5 kbar and 800–860°C (D2 convergence), melt crystallization and garnet breakdown during decompression to early retrograde conditions of 3–4.5 kbar and 700–750°C (D2 convergence, D3 extension), and a late retrograde stage with decompression and cooling to 3–3.5 kbar and 550–650°C (D4). We combine monazite chemistry with phase assemblages predicted by pseudosection modelling to link specific monazite growth domains to individual tectonic stages. Monazite domains containing moderate Th and low to moderate Y are interpreted to be preserved from the prograde path when garnet was stable, and constrain the timing of prograde metamorphism at 536 ± 4 Ma. High‐Th, low‐Y domains, dated at 527 ± 2 Ma, represent the earliest stages of post‐peak melt crystallization. Monazite domains with elevated Y and low‐moderate Th are interpreted to represent monazite growth during garnet breakdown at 514 ± 2 Ma. Our monazite ages, combined with published biotite Ar–Ar cooling ages, yield a two‐stage history of cooling at 3–8°C/Myr from ~530 Ma to ~510 Ma followed by cooling at 18–25°C/Myr from ~510 Ma to ~490 Ma, corresponding to 0.2–0.6 mm/yr of exhumation. This duration of granulite‐facies metamorphism in the Larsemann Hills is consistent with estimates for Precambrian granulite facies metamorphic complexes elsewhere.
Read full abstract