Overexpression of uridine-cytidine kinase 2 (UCK2), a key enzyme in the pyrimidine salvage pathway, is implicated in human cancer development, while its regulation under nutrient stress remains to be investigated. Here, we show that under glucose limitation, AMPK phosphorylates glycinamide ribonucleotide formyltransferase (GART) at Ser440, and this modification facilitates its interaction with UCK2. Through its binding to UCK2, GART generates tetrahydrofolate (THF) and thus inhibits the activity of integrin-linked kinase associated phosphatase (ILKAP) for removing AKT1-mediated UCK2-Ser254 phosphorylation under glucose limitation, in which dephosphorylation of UCK2-Ser254 tends to cause Trim21-mediated UCK2 polyubiquitination and degradation. In this way, both UCK2 binding ability and THF producing catalytic activity of GART protect protein stability of UCK2 and pyrimidine salvage synthesis, and sustain tumor cell growth under glucose limitation. In addition, UCK2-Ser254 phosphorylation level displays a positive relationship with GART-Ser440 phosphorylation level and its enhancement is correlated with poor prognosis of human hepatocellular carcinoma (HCC) patients. These findings reveal a non-canonical role of GART in regulating pyrimidine salvage synthesis under nutrient stress, and raise the potential for alternative treatments in targeting pyrimidine salvage-dependent tumor growth.
Read full abstract