Abstract
Hepatocarcinogenesis is a multi-step process. However, the regulators of hepatocellular carcinoma (HCC) initiation are understudied. Adult liver-specific gene expression was globally downregulated in HCC. We hypothesize that adult liver-specific genes, especially adult liver-enriched transcription factors may exert tumor-suppressive functions in HCC. In this study, we identify ZBTB7B, an adult liver-enriched transcription factor as a permissive regulator of HCC initiation. ZBTB7B is highly expressed in hepatocytes in adult livers, compared to fetal livers. To evaluate the functions of ZBTB7B in hepatocarcinogenesis, we performed hepatocyte-specific ZBTB7B knockout in hydrodynamic oncogene transfer-induced mouse liver cancer models. Hepatocyte-specific knockout of ZBTB7B promotes activated Akt and N-Ras-induced HCC development. Moreover, ZBTB7B deficiency sensitizes hepatocytes to a single oncogene Akt-induced oncogenic transformation and HCC initiation, which is otherwise incompetent in inducing HCC. ZBTB7B deficiency accelerates HCC initiation by down-regulating adult liver-specific gene expression and priming livers to a fetal-like state. The molecular mechanism underlying ZBTB7B functions in hepatocytes was investigated by integrated transcriptomic, phosphoproteomic, and chromatin immunoprecipitation-sequencing analyses. Integrative multi-omics analyses identify c-Jun as the core signaling node in ZBTB7B-deficient liver cancer initiation. c-Jun is a direct target of ZBTB7B essential to accelerated liver cancer initiation in ZBTB7B-deficient livers. Knockdown of c-Jun expression or dominant negative c-Jun expression delays HCC development in ZBTB7B-deficient livers. In addition, ZBTB7B competes with c-Jun for chromatin binding. Ectopic ZBTB7B expression attenuates the tumor-promoting functions of c-Jun. Expression of ZBTB7B signature, composed of 140 genes co-regulated by ZBTB7B and c-Jun, is significantly downregulated in early-stage HCCs compared to adjacent normal tissues, correlates to liver-specific gene expression, and is associated with good prognosis in human HCC. Thus, ZBTB7B functions as a permissive regulator of HCC initiation by directly regulating c-Jun expression and function.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have