Primary chondroprogenitors obtained from standardized cell sources (e.g., FE002 clinical grade cell sources) may be cultured in vitro and may be cytotherapeutically applied in allogeneic musculoskeletal regenerative medicine. Multicentric translational research on FE002 human primary chondroprogenitors under the Swiss progenitor cell transplantation program has notably validated their robustness and high versatility for therapeutic formulation in clinically compatible prototypes, as well as a good safety profile in diverse in vivo preclinical models. Therein, stringently controlled primary cell source establishment and extensive cell manufacturing optimization have technically confirmed the adequation of FE002 primary chondroprogenitors with standard industrial biotechnology workflows for consistent diploid cell biobanking under GMP. Laboratory characterization studies and extensive qualification work on FE002 progenitor cell sources have elucidated the key and critical attributes of the cellular materials of interest for potential and diversified human cytotherapeutic uses. Multiple formulation studies (i.e., hydrogel-based standardized transplants, polymeric-scaffold-based tissue engineering products) have shown the high versatility of FE002 primary chondroprogenitors, for the obtention of functional allogeneic cytotherapeutics. Multiple in vivo preclinical studies (e.g., rodent models, GLP goat model) have robustly documented the safety of FE002 primary chondroprogenitors following implantation. Clinically, FE002 primary chondroprogenitors may potentially be used in various forms for volumetric tissue replacement (e.g., treatment of large chondral/osteochondral defects of the knee) or for the local management of chondral affections and pathologies (i.e., injection use in mild to moderate osteoarthritis cases). Overall, standardized FE002 primary chondroprogenitors as investigated under the Swiss progenitor cell transplantation program were shown to constitute tangible contenders in novel human musculoskeletal regenerative medicine approaches, for versatile and safe allogeneic clinical cytotherapeutic management.
Read full abstract