A theory of partial flame propagation driven by the gravitational field is developed. Using the on-shell approach, equations for the gas velocity distributions and the front shape of a steady flame are obtained and solved numerically. It is found that the solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of strong gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a complete explanation is given of the intricate observed behavior of flames near the limits of inflammability, including the dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction.
Read full abstract