2,4-dichlorophenol (2,4-DCP) is a typical chlorophenol that has been widely used in industrial production and caused serious pollution to the environment. In this study, the performance of Fe/Ni bimetallic nanoparticles supported on polystyrene cation exchange resin (Fe/Ni-D072) to remove 2,4-DCP was evaluated. The effects including the doping amount of Ni, the dosage of Fe/Ni-DCP, the initial concentration of 2,4-DCP, and pH value of the solution on the removal efficiency were also investigated. The results showed that when the initial concentration of 2,4-DCP was 20 mg/L and pH = 7.3, 90% of 2,4-DCP could be dechlorinated by Fe/Ni-D072 (Ni% = 30 wt%, dosage: 6.7 g/L) after 12 h reaction. The dechlorination process followed a pseudo-first-order model, and the reaction constant was 0.252 h−1. In addition, the effects of humic acid and common coexisting ions on dechlorination were studied. The results showed that humic acid with a low concentration (5 mg/L) and CO32− restrained the degradation of 2,4-DCP. The dechlorination products of 2,4-DCP were identified by HPLC and the result showed phenol was the main product with a slight amount of 2-CP as the dechlorination intermediate, and 4-CP was barely detected. These results suggest that Fe/Ni-D072 was a promising catalytic material for the removal of chlorophenol and has great application prospects in groundwater remediation.