Abstract

The persistent organic pollutant hexachlorobenzene (HCB) and all 11 further chlorobenzenes were hydrodechlorinated at environmentally relevant concentrations in miniaturized reaction systems, catalyzed by low concentrated Pd(0)-nanoparticles, to examine differences in dechlorination rates and pathways. Using solid-phase microextraction coupled to gas chromatography-mass spectrometry allowed the simultaneous extraction and detection of reactants, intermediate products and fully dechlorinated benzene, regardless of their different physicochemical properties. Dechlorination of HCB with formation of intermediates mainly proceeded via pentachlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,3-trichlorobenzene, 1,2-dichlorobenzene, and monochlorobenzene to benzene. Specific catalytic activities of Pd(0)-nanoparticles (100–3400 L g−1 min−1) differed depending on chlorination degree of chlorobenzenes and position of chlorine atoms. An inductive effect is assumed to favor a removal of the vicinal chlorine atom. The presented method permits the facile determination and comparison of nanomaterials’ specific catalytic activities and allows the elucidation of dehalogenation pathways. It further enables to specifically examine formed intermediates to assess their toxicity and biodegradability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call