Soybean is an important oil crop with multiple uses. Soybeans can grow in various soil types and climates; however, salt stress reduces their yield. Plant growth-promoting microorganisms are an environmentally benign way to combat stress and boost plant tolerance. In the present study, we have identified plant growth-promoting bacteria that can produce indole acetic acid (IAA) and induce distinct growth characteristics in soybean plants under salt stress. The YNA40 isolate was identified as Acinetobacter pittii through 16S rRNA sequencing and phylogenetic analysis. A pure culture of Acinetobacter pittii YNA40 was subjected to chromatographic and mass spectrometry selected-ion monitoring (GC-MS/SIM) for IAA quantification. The results revealed that the YNA40 bacterial strain showed a significantly higher IAA concentration (473.88 ng/mL) at 4% sodium chloride (NaCl). Moreover, in a salt-stress condition, inoculation with Acinetobacter pittii YNA40 was able to induce increased shoot length (23.48%), shoot weight (24%), root length (2.47%), and root weight (44.82%) compared to the uninoculated control. Therefore, soybean seedlings were inoculated with YNA40 to examine their potential for promoting growth and reprogramming after salt stress. Inoculation with YNA40 isolates mitigated the salt stress and significantly improved the growth of the plant, enhanced the chlorophyll contents, and improved the quantum efficiency of chlorophyll fluorescence, total phenolic content, flavonoid content, the diphenyl-1-picrylhydrazyl (DPPH) activity, and antioxidant activities of soybean plants during and after salt stress. The present research demonstrated that the application of the YNA40 isolate is promising for reducing salt stress in soybean plants and helps plants grow better in a salt-stressed environment.
Read full abstract