Abstract

Endophytic fungi have recently garnered significant attention as next-generation bioinoculants due to their plausible role in ameliorating abiotic and biotic stresses. This adaptation is achieved via various signalling molecules and mechanisms established by these symbionts with their hosts. The present study screened 61 endophytic isolates of culturable mycobiome associated with wheat variety PBW725 during their crop cycle. Three endophytic isolates exhibited a minimum reduction in their growth and maximum biomass production during the drought stress developed using polyethylene glycol 6000. Further, these isolates also exhibited plant growth promoting properties by virtue of the production of indole acetic acid, gibberellic acid and ammonia. These isolates also exhibited the propensity to solubilise phosphate and zinc, produce siderophores and further exhibit extracellular enzymatic activities, contributing to plants' adaptability to abiotic stresses. The best isolate amongst the three was #5TAKL-3a, identified as Penicillium citrinum based on multilocus phylogenetic analysis. The isolate as a bioinoculant enhances various biochemical and physiological properties in planta. Hence our studies indicate that Penicillium citrinum #5TAKL-3a is a potential candidate bioinoculant for field trials to improve the adaptability of the wheat plant under drought stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.