This study aimed to investigate the influence of garlic metabolites on the quorum sensing (QS) of Bacillus cereus, a foodborne pathogen that controls its main virulence factor through QS. The QS signal receptor PlcR of B. cereus was targeted by molecular docking with 82 garlic metabolites to identify the most potent QS inhibitors. Five metabolites, quercetin, kaempferol, luteolin, flavone, and rutin, were selected for further evaluation of their impacts on the growth, toxin production, and virulence of B. cereus in vitro. The expression levels of key QS genes were also measured to verify their anti-QS ability. The results revealed that quercetin reduced enterotoxin production by B. cereus but did not affect the QS process at the transcriptional level; flavone and rutin in garlic interfered with the QS of B. cereus by competing with the autoinducing peptide (AIP) PapR7 for the PlcR binding site, resulting in decreased enterotoxin secretion and hemolysis without altering the bacterial growth. Interestingly, luteolin and kaempferol in garlic acted as AIP analogs and bound to PlcR to stimulate the QS process and virulence. Furthermore, kaempferol, luteolin, flavone, and rutin had distinct or opposite interactions with PapR7 at the Gln237 or Tyr275 residues of PlcR, which determined the suppression or enhancement of the QS process. The findings suggested that flavone and rutin were effective compounds to inhibit the QS process in garlic and could be used as alternative methods to control B. cereus.
Read full abstract