Natural gas hydrate (NGH) is a prospective clean energy. Conventional development method of the NGH reservoir by pressure drop in vertical well faces the problems of limited stimulated reservoir volume, low production efficiency, and low conductivity. At present, pressure drop production in various well types and stimulation treatments such as hydraulic fracturing in fracable NGH reservoirs have become the focus. The effects of pressure drop production in vertical well, horizontal well, radial wells, and hydraulic fracturing in vertical and horizontal wells in NGH reservoirs were simulated with HydrateResSim. We simulated the productivity of NGH reservoir for 1000 days with several types of development mode. The productivity is highest in horizontal well staged fracturing (5 stages), followed by pressure drop production in horizontal well, fractured vertical well (single fracture), and radial well (16 holes). The worst effect is obtained through production by pressure drop in single vertical well. The optimal effects were obtained with the fracture spacing of 58 m, the fracture half-length of 100 m and the conductivity of 30 μm2 cm. The horizontal well multi-cluster fracturing significantly enlarges the stimulated area and provides channels for gas migration and enhances productivity.
Read full abstract