Hydrochar, recognized as a green and sustainable soil amendment, has garnered significant attention. However, information on the aging process in soil and the temporal variability of hydrochar remains limited. This study delves deeper into the interaction between hydrochar and soil, focusing on primary factors influencing hydrochar aging during a 30-month rice-wheat rotation system. The results showed that the initial aging of hydrochar (0-16 months) is accompanied by the development of specific surface area and leaching of hydrochar-derived dissolved organic matter (HDOM), resulting in a smaller particle size and reduced carbon content. The initial aging also features a mineral shield, while the later aging (16 to 30 months) involves surface oxidation. These processes collectively alter the surface charge, hydrophilicity, and composition of aged hydrochar. Furthermore, this study reveals a dynamic interaction between the HDOM and DOM derived from soil, plants, and microbes at different aging stages. Initially, there is a preference for decomposing labile carbon, whereas later stages involve the formation of components with higher aromaticity and molecular weight. These insights are crucial for understanding the soil aging effects on hydrochar and HDOM as well as evaluating the interfacial behavior of hydrochar as a sustainable soil amendment.
Read full abstract