We employ first-principles quantum field theoretical methods to investigate the longitudinal and transverse electrical conductivities of a strongly magnetized hot quantum electrodynamics (QED) plasma at the leading order in coupling. The analysis employs the fermion damping rate in the Landau-level representation, calculated with full kinematics and exact amplitudes of one-to-two and two-to-one QED processes. In the relativistic regime, both conductivities exhibit an approximate scaling behavior described by σ∥,⊥=Tσ˜∥,⊥, where σ˜∥,⊥ are functions of the dimensionless ratio |eB|/T2 (with T denoting temperature and B magnetic field strength). We argue that the mechanisms for the transverse and longitudinal conductivities differ significantly, leading to a strong suppression of the former in comparison to the latter. Published by the American Physical Society 2024
Read full abstract