Defect identification is an important issue in structural health monitoring. Herein, originated from inverse techniques, a merging approach is established by the numerical manifold method (NMM) and whale optimization algorithm-back propagation (WOA-BP) cooperative neural network to identify hole defects in heat conduction problems. On the one hand, the NMM can simulate varying hole configurations on a fixed mathematical cover, which eases the generation of “big data” for the training of neural network to a large extent. On the other hand, the WOA, a global optimization algorithm, is adopted to optimize the initial weights and thresholds of the BP neural network to alleviate its frequently encountered local optimum phenomenon. The boundary temperatures of sampling points by the NMM and the associated hole geometries are used for the learning of WOA-BP neural network, which is then applied to predict the hole defects. Numerical examples concerning the detection of circular/ elliptical holes demonstrate that the proposed method possesses higher accuracy and satisfying robustness in holes prediction compared with standard BP network under the same condition. The present work provides a convenient pathway and great potential in application of structural health monitoring.
Read full abstract