Abstract
Although numerous analytical and numerical methods have been developed for inverse heat conduction problems in single-layer materials, few methods address such problems in composite materials. The following paper studies inverse interface problems with unknown boundary conditions by using interior point observations for heat equations with spherical symmetry. The zero degeneracy at the left interval 0<r<R1 leads to solution difficulties in the one-dimensional interface problem. So, we first investigate the well-posedness of the direct (forward) problem in special weighted Sobolev spaces. Then, we formulate three groups of unknown boundary conditions and inverse problems upon internal point measurements for the heat equation with spherical symmetry. Second-order finite difference scheme approaches for direct and inverse problems are developed. Computational test examples illustrate the theoretical statements proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.