Phosphorus and nitrogen are important elements in both environmental cycles and biological growth, and their imbalance can lead to serious environmental and biological problems. It is important to be able to monitor the concentration of nitrate and phosphate in the water online. In this paper, a bifunctional boron-doped diamond (BDD) electrode with repeatable electrochemical renewal and modification ability has been developed and used as a shared working electrode for the determination of nitrate and phosphate. First, phosphate can be detected directly with a bare BDD electrode. After a thin copper (Cu) layer was electrodeposited on the BDD electrode, nitrate could be determined. The copper layer is then removed under a positive voltage, and the BDD electrode is renewed and can be used again for phosphate detection. This method enables the detection of both phosphate and nitrate while also improving the stability and repeatability through the renewal of the electrode surface. The segmented linear ranges for phosphate were 0.02-0.4 and 0.4-3 mg/L with a detection limit of 0.004 mg/L. The sensor detected nitrate in a wide concentration range, with segmented linear relationships in the ranges of 0.07-3 and 3-100 mg/L, with a detection limit of 0.065 mg/L. The electrochemical sensor based on the BDD electrode has a good reproducibility for phosphate and nitrate detection. The relative standard deviation (RSD) values of the current responses were 2.98, 2.79, 1.66, 1.81, and 1.23%, respectively, for 35 consecutive tests in 0.05, 0.2, 0.5, 1, and 1.5 mg/L phosphate solution. The RSD values of the current responses were 2.00, 0.97, and 1.03%, respectively, for 25 consecutive tests in 5, 7, and 10 mg/L nitrate solution.
Read full abstract