We report on tungsten disulfide (WS2) flakes grown by chemical vapor deposition (CVD), which exhibit a flower-like surface structure above the primary few-layer flake with a triangular shape. The fine structure is only revealed in the mechanical, chemical, and electronic properties of the flake but not in the topography. The origin of this structure is the peculiar one-step growth during the CVD process that permits to control the sulfur concentration at any time. A high concentration of S at the onset of the deposition process leads to a rapid growth of the flake, resulting in tungsten vacancies. Reducing the sulfur concentration toward the end of the growth slows down the reaction and leads to sulfur vacancies. These microscale domains were studied by confocal- and tip-enhanced Raman spectroscopy revealing their chemical composition with high spatial resolution. A strong quenching of the photoluminescence in the tungsten-vacancy domains is observed. Atomic force microscope measurements, performed in intermittent contact mode, force modulation mode (including lateral force mode), and PeakForce quantitative nanomechanics mode, show that the mechanical properties of these domains differ. Within the tungsten-vacancy domains, the adhesion force is reduced, while the friction force increased. Kelvin probe force microscopy measurements show that the electronic properties of the flakes are modulated by these domains. The combined nanomechanical and nanospectroscopy measurements provide detailed insights on the inhomogeneous surface properties of the single WS2 flake, further highlighting how its multidomain properties can be finely tuned using CVD.
Read full abstract