Abstract

This study provides some clarifications about the influence of microstructural parameters on the susceptibility of low-copper Al-Zn-Mg alloy to stress corrosion cracking (SCC). Tensile tests in air were carried out on AA7046 in T4 and T4 aged at 150 °C (named 150/20) metallurgical states after pre-exposure of the specimens to a chloride solution under mechanical loading. The results showed the predominant role of the corrosion-induced hydrogen during SCC process on the loss of elongation to failure. Scanning kelvin probe force microscopy (SKPFM) measurements were performed for the T4 specimens as well as for a 530 °C heat-treated T4 specimen with a coarse-grained microstructure; this allowed the contribution of hydrogen diffusion at the grain boundaries on the hydrogen distribution to be highlighted. The analysis of the fracture modes after tensile tests and hydrogen diffusion profiles obtained by SKPFM in the framework of previous studies investigating the microstructure-hydrogen and plasticity-hydrogen relationships allowed to propose a qualitative model to describe SCC phenomena. The detrimental role of hydrogen at the grain boundaries on the mechanical behaviour was highlighted; the outcome of the evaluation of results from the present study in combination with our previous studies and literature data suggested that it can be limited by hydrogen trapping on intragranular η-MgZn2 precipitates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.