Abstract In the past few decades, cracks because of stress corrosion cracking (SCC) have been detected in the dissimilar weld joints using nickel-based alloy in piping system of boiling water reactors (BWRs). Thus, the structural integrity assessment for such weld joints has become important. Nowadays, probabilistic fracture mechanics (PFM) analysis is recognized as a rational method for structural integrity assessment because it can consider inherent uncertainties of various influencing factors as probability distributions and quantitatively evaluate the failure probability of a cracked component. The Japan Atomic Energy Agency has developed a PFM analysis code PASCAL-SP for a weld joint of piping system in nuclear power plant. This study improves the analysis functions of PASCAL-SP for weld joint using nickel-based alloy in BWR susceptible to SCC. As an analysis example of the improved version of PASCAL-SP, the failure probability of a weld joint is quantitatively evaluated. Furthermore, sensitivity analyses are conducted concerning the effect of leak detection and in-service inspection. From the analysis results, it is concluded that the improved version of PASCAL-SP is useful for structural integrity assessment.