Abstract

This paper presents the state of the art in Structural Reliability Analysis (SRA) methods with a view of identifying key applications of each method and its proposed variations, qualifying characteristics, advantages, and limitations. Due to the increasing complexity and scale of modern offshore jacket structures, it becomes increasingly necessary to propose an accurate and efficient approach for the assessment of uncertainties in their material properties, geometric dimensions, and operating environments. SRA, as a form of uncertainty analysis, has been demonstrated to be a useful tool in the design of structures because it can directly quantify how uncertainty about input parameters can affect structural performance. Herein, attention was focused specifically on the probabilistic fracture mechanics approach because this accounts accurately for fatigue reliability mostly encountered as being dominant in the design of such structures. The well-established analytical/approximate methods such as the First- and Second-Order Reliability Methods (FORM/SORM) are widely used as they offer a good balance between accuracy and efficiency for realistic problems. They are, however, inaccurate in cases of highly non-linear systems. As a result, they have been modified using methods such as conjugate search direction approach, saddle point approximation, subset simulation, evidence theory, etc. in order to improve accuracy. Initially, direct simulations methods such as the Monte Carlo Simulation Method (MCS) with its various variance reduction techniques such as the Importance Sampling (IS), Latin Hypercube Sampling (LHS), etc. are ideal for structures having non-linear limit states but perform poorly for problems that calculate very low probabilities of failure. Overall, each method has its own merits and limitation, with FORM/SORM being the most commonly used, but recently, simulation methods have increasingly been used due to continuous advances in computation powers. Other relevant methods include the Response Surface Methods (RSM) and the Surrogate Models/Meta-models (SM/MM), which are advanced approximation methods and are ideal for structures with implicit limit state functions and high-reliability indices. Combinations of advanced approximation methods and reliability analysis methods are also found in literature as they can be suitable for complex, highly non-linear problems.

Highlights

  • Modern offshore jacket structures such as those supporting wind turbines are often exposed to severe environmental conditions

  • This work presents the state of the art in methods used for structural reliability analysis (SRA) based on a systematic review focusing mainly on literature from 2005 to

  • The paper focused on presentations of methods and their variations, aiming to qualify their advantages and limitations with applicability to design of metal offshore jacket structures

Read more

Summary

Introduction

Modern offshore jacket structures such as those supporting wind turbines are often exposed to severe environmental conditions. Failures occurring will result in significant financial losses. This moves the point of focus toward structural reliability assessment of such structures [1]. For larger turbines in deeper waters, monopiles become very large and increasingly uneconomical due to the difficulty of fabricating and installing such systems, as well as the consideration of modal requirements. Space frame structures, such as jackets derived from the petroleum industry, offer a lighter and yet stiff alternative to monopiles

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call