Artificial Intelligence (AI) Safety Institutes and governments worldwide are deciding whether they evaluate and audit advanced AI themselves, support a private auditor ecosystem or do both. Auditing regimes have been established in a wide range of industry contexts to monitor and evaluate firms’ compliance with regulation. Auditing is a necessary governance tool to understand and manage the risks of a technology. This paper draws from nine such regimes to inform (i) who should audit which parts of advanced AI; and (ii) how much resources, competence and access public bodies may need to audit advanced AI effectively. First, the effective responsibility distribution between public and private auditors depends heavily on specific industry and audit conditions. On the basis of advanced AI’s risk profile, the sensitivity of information involved in the auditing process, and the high costs of verifying safety and benefit claims of AI Labs, we recommend that public bodies become directly involved in safety critical, especially gray- and white-box, AI model audits. Governance and security audits, which are well-established in other industry contexts, as well as black-box model audits, may be more efficiently provided by a private market of auditors under public oversight. Secondly, to effectively fulfill their role in advanced AI audits, public bodies need extensive access to models and facilities. Public bodies’ capacity should scale with the industry's risk level, size and market concentration, potentially requiring 100s of employees for auditing in large jurisdictions like the EU or US, like in nuclear safety and life sciences.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access