In analytical modeling for biochemical pathways, precisely determining unknown parameters is paramount. Traditional methods, reliant on experimental time course data, often encounter roadblocks — limited accessibility and variable quality — that can significantly impact the algorithm’s performance. In this study, we address these hurdles by unveiling a groundbreaking parameter estimation technique, Constrained Regularized Fuzzy Inferred Extended Kalman Filter (CRFIEKF). This innovative approach eliminates the need for experimental time-course measurements and capitalizes on the existing imprecise relationships among the molecules within the network. Our proposed framework integrates a Fuzzy Inference System (FIS) block to encapsulate these approximated relationships. To fine-tune the estimated parameter values, we employ Tikhonov regularization. The selection of Tikhonov regularization and Gaussian membership functions was based on the Mean Squared Error (MSE) values observed during the parameter estimation process, contrasting our results with those of previous studies.We rigorously tested the proposed approach across various pathways, from the glycolytic processes in mammalian erythrocytes and yeast cells to the intricate JAK/STAT and Ras signaling pathways. The results were impressive, showing a significant similarity (p-value < 0.001) to the outcomes of specific prior experiments. The dynamics of the biochemical networks normalized within the [0, 1] range mirrored the transient behavior (MSE < 0.5) of both in vivo and in silico results from previous studies. In conclusion, our findings highlight the effectiveness of CRFIEKF in estimating the kinetic parameter values without prior knowledge of experimental data within a biochemical pathway in the state-space model. The proposed method underscores its potential as a game-changer in biochemical pathway analysis.