Abstract

Shack-Hartmann wavefront sensing is a technique for measuring wavefront aberrations, whose use in adaptive optics relies on fast position tracking of an array of spots. These sensors conventionally use frame-based cameras operating at a fixed sampling rate to report pixel intensities, even though only a fraction of the pixels have signal. Prior in-lab experiments have shown feasibility of event-based cameras for Shack-Hartmann wavefront sensing (SHWFS), asynchronously reporting the spot locations as log intensity changes at a microsecond time scale. In our work, we propose a convolutional neural network (CNN) called event-based wavefront network (EBWFNet) that achieves highly accurate estimation of the spot centroid position in real time. We developed a custom Shack-Hartmann wavefront sensing hardware with a common aperture for the synchronized frame- and event-based cameras so that spot centroid locations computed from the frame-based camera may be used to train/test the event-CNN-based centroid position estimation method in an unsupervised manner. Field testing with this hardware allows us to conclude that the proposed EBWFNet achieves sub-pixel accuracy in real-world scenarios with substantial improvement over the state-of-the-art event-based SHWFS. An ablation study reveals the impact of data processing, CNN components, and training cost function; and an unoptimized MATLAB implementation is shown to run faster than 800 Hz on a single GPU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.