Vibration displacement is one of the key parameters in fault diagnosis of vibrating screens. Monitoring of acceleration signals of vibrating screens can be disturbed due to various factors such as on-site working conditions and equipment. In order to obtain accurate displacement signals of vibrating screen, the method for converting vibration acceleration to displacement based on improved Savitzky–Golay (S–G) filter is proposed. The Particle Swarm Optimization (PSO) algorithm is used to optimize the window length of the S–G filter with the fixed polynomial. The filters are cascaded to denoise the signals multiple times. The reasonable regularization parameter of the Smoothed Prior Approach (SPA) is calculated to remove the trend item from the acceleration signals. The vibration displacement is obtained by integrating the preprocessed acceleration data in the frequency domain. The results demonstrate that the objectivity of parameter selection of filter is improved, and the denoising effect is significant. The filtering effect of the filter is further improved after cascading. It becomes better as the number of stages of cascade increases. The vibration displacement can be obtained accurately by the proposed method. The vibration test platform is built to verify the correctness of the method.