Recently, direct inkjet printing of conductive solutions has received much attention in the microfluidics and lab-on-a-chip community because of its low-cost and mask-free deposition of electrodes on various substrates. However, the investigation of micro-scale direct inkjet printing on the polydimethylsiloxane (PDMS) substrate has not been completed. Here we present a direct inkjet printing technique to produce narrow (40–90 µm) silver microelectrodes on PDMS. Extensive experimental characterization studies on the pattern uniformity and electrical properties of the printed silver lines are presented. The effect of major printing parameters such as drop spacing, sintering temperature and duration, platen temperature, and nozzle temperature have been thoroughly investigated. We also investigated multiple layer printing as well as the effects of thermal expansion and mechanical bending. In order to demonstrate the utility of the inkjet-printed silver microelectrode, we fabricated both quadruple and castellated electrodes, and conducted dielectrophoretic manipulation of microbeads. The results clearly show that the printed silver electrodes can be used for electrokinetic applications in PDMS microchip devices. We believe that the direct inkjet printing of silver ink on PDMS presented here can provide a very convenient way of creating microelectrodes on PDMS devices for a variety of applications in the MEMS, microfluidics, and lab-on-a-chip communities.
Read full abstract