This study presents the accumulations of the excess pore water pressure and the deformation as well as the noncoaxial behavior of intact soft clay subjected to pure principal stress rotation. Series of tests were carried out by using a dynamic hollow cylinder apparatus to highlight the influence of intermediate principal stress parameterb. It was found that the rate of PWP evolution was greatly influenced byb, but the influence was not monotonous. Specimens under the conditionb= 0.75 had the highest accumulation of pore water pressure while under the conditionb= 0 had the strongest resistance to the pore pressure generation. PWP accumulated mainly in the first cycle. The failure of specimens under principal stress rotation was controlled by the strain other than the pore pressure. The shear stiffness decreased more quickly with higherbvalue. The direction of the principal strain increment was strongly dependent on the principal stress increment orientation and less influenced by thebvalue and the number of cycles.
Read full abstract