As the efficiency of advanced aero engines improves, the operational speed of their rotors increases. This heightened operational speed makes the rotor dynamics highly sensitive to changes in the rotor’s mass asymmetry state, or unbalance state. During the use of a dual-spool turbofan engine, when its supercritical high-pressure rotor (HPR) exceeds a certain operational speed, the rotor’s vibration spikes and continues to increase with the operational speed until it drops sharply near the maximum operational speed. Analysis of the bolt joints in the faulty rotor reveals various phenomena such as joint interface damage, changes in bolt loosening torque distribution, and alterations in rotor initial unbalance. This paper proposes that at high operational speeds, the bolt joint of the HPR undergoes sudden angular deformation, resulting in the slanting of the principal axis of inertia of the turbine disk. This slant leads to changes in the unbalanced state of the HPR. The additional unbalance causes a sudden rotational inertia load excitation, triggering the rotor vibration failure. Subsequently, a rotor dynamic model that incorporates the angular deformation of the joints is established to simulate how this joint deformation influences the dynamic response of the rotor. The simulation results align well with the observed failure phenomenon and validate the proposed failure mechanism. Finally, troubleshooting measures are proposed and implemented in the faulty engine, effectively mitigating the vibration fault.
Read full abstract