Male and female gametogeneses differ markedly in all mammals. While male germ cells are continuously being produced from stem cells throughout the reproductive life span, the number of female germ cells is fixed during prenatal development and, soon after birth, all of the oocytes are arrested in a modified diplotene, or dictyate, stage. Following puberty, dictyate oocytes are hormonally triggered to mature either singly or in groups, resulting in ovulation and the completion of the first meiotic division. It has been hypothesized that female mice are more susceptible to dominant lethal effects of intercalating agents that male mice because oocyte chromosomes, which are arrested in a diffuse state, are generally more accessable to intercalation than are the more condensed chromosomes present within most male germ cell stages. This hypothesis was further tested using the intercalating agent hycanthone methanesulfonate. Effects of hycanthone were studied in maturing and primordial oocytes and in male germ cells throughout spermatogenesis. No induction of dominent lethality was observed for treated males while a significant increase in embryonic death, expressed around the time of implantation, was observed in females that mated within 4.5 days after treatment. These effects were the result of dominant lethal mutations induced in maturing oocytes and not of maternal toxicity as indicated by the presence of chromosomal aberrations observed at first-cleavage metaphase of zygotes obtained from treated females. These results add support to the hypothesis that certain intercalating chemicals, which are not mutagenic to male mice, may be mutagenic to females and point to a need for more in-depth studies of female-specific mutagenesis.
Read full abstract