Abstract

The shape, relationships, relative DNA content, and nucleolar activity of the short arm of acrocentric bivalents were studied in human oocytes from early diplotene to dictyotene. At the beginning of diplotene, the short arms of the previously paired chromosomes were again separated and displayed the same morphological features as in mitotic prophase chromosomes. They were connected only with the nucleolus. In situ hybridization and silver staining showed that the nucleolar organizer regions (NORs) were located in the peripheral region of the nucleolus. Tritiated-uridine incorporation was active. At birth, the relationships of the acrocentric short arms showed increasing complexity. The chromosomes ended in nucleolus-associated chromatin blocks of irregular shape, containing large quantities of DNA as demonstrated by intense binding of 3H-actinomycin D. The number of chromosomes converging on these chromatin blocks exceeded the number of acrocentrics, suggesting that heterochromatic regions of other chromosomes were associated with the short arm of acrocentrics. In the electron microscope, the NORs were represented by fibrillar centers located on the periphery of the nucleolus and consistently connected with the blocks of dense chromatin. These relationships remained unchanged in the primordial oocyte in the adult ovary. Persistence of 3H-uridine uptake showed that the oocyte was not at a "resting" stage. The possible cytogenetic consequences of these observations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call