This paper derives the algebraic characteristic of the matrix transformations class by the method of isomorphic mappings on the algebraic characteristic of the class of vector transformations using the primitive program algebras. The paper also describes the hardware implementation of the matrix operations accelerator based on the obtained results. The urgency of the work is caused by the fact that today there is a rapid integration of computer technology in all spheres of society and, as a consequence, the amount of data that needs to be processed per unit time is constantly increasing. Many problems involving large amounts of complex computation are solved by methods based on matrix operations. Therefore, the study of matrix calculations and their acceleration is a very important task. In this paper, as a contribution in this direction, we propose a study of the matrix transformations class using signature operations of primitive program algebra such as multi place superposition, branching, cycling, which are refinements of the most common control structures in most high-level programming languages, and also isomorphic mapping. Signature operations of primitive program algebra in combination with basic partial-recursive matrix functions and predicates allow to realize the set of all partial-recursive matrix functions and predicates. Obtained the result on the basis of matrix primitive program algebra. Isomorphism provides the reproduction of partially recursive functions and predicates for matrix transformations as a map of partially recursive vector functions and predicates. The completeness of the algebraic system of matrix transformations is ensured due to the available results on the derivation of the algebraic system completeness for vector transformations. A name model of matrix data has been created and optimized for the development of hardware implementation. The hardware implementation provides support for signature operations of primitive software algebra and for isomorphic mapping. Hardware support for the functions of sum, multiplication and transposition of matrices, as well as the predicate of equality of two matrices is implemented. Support for signature operations of primitive software algebra is provided by the design of the control part of the matrix computer based on the RISC architecture. The hardware support of isomorphism is based on counters, they allow to intuitively implement cycling in the functions of isomorphic mappings. Fast execution of vector operations is provided by the principle of computer calculations SIMD.
Read full abstract