Contemporary outcomes and relapse patterns in primary CNS lymphoma (PCNSL) are lacking. We analyzed factors associated with relapse in a large cohort with extensive follow-up. T1-post-contrast-enhancing disease was characterized in immunocompetent PCNSL (diffuse large B-cell) patients from 1983 to 2020. Patients were stratified by response to induction and consolidation (complete/unconfirmed [CR/CRu], partial, stable, progression [POD]). Refractory was POD during (or relapse ≤3 months of) induction. Initial relapse site was categorized as local (involving/adjacent to baseline), distant intraparenchymal, leptomeningeal, or other. Progression-free (PFS) and overall survival (OS) were assessed with proportional hazards. Cumulative incidence with competing risks was used to assess local relapse. Median follow-up was 7.4 years (N = 559). Most (321, 57%) were recursive partitioning analysis class 2 (age ≥50, Karnosfky Performance Status [KPS] ≥70). Most had supratentorial (420, 81%), multifocal (274, 53%), bilateral (224, 43%), and deep structure involvement (314, 56%). Nearly all received methotrexate-based induction (532, 95%). There was no difference in PFS or OS from consolidation based on initial response to induction (CR/CRu vs PR) in patients who ultimately achieved a CR/CRu to consolidation. PFS at 1-, 5 years for 351 patients with CR/CRu to consolidation was 80% (95% confidence interval [95% CI]: 76%-84%) and 46% (95% CI: 41%-53%), respectively; 1-year cumulative incidence of local versus nonlocal relapse was 1.8% versus 15%, respectively. For 97 refractory patients, 1-year cumulative incidence of local versus nonlocal relapse was 57% versus 42%, respectively. Deep structure involvement (HR 1.89, 95% CI: 1.10%-3.27%) was associated with local relapse in refractory patients. We report the first comprehensive relapse patterns in a large PCNSL cohort. While relapses post-CR to consolidation are typically distant and unpredictable, refractory patients had a relatively high incidence of local relapse. These findings can help optimize multimodality therapy for this highest-risk population.
Read full abstract