Objective. Primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) are malignant primary brain tumors with different biological characteristics. Great differences exist between the treatment strategies of PCNSL and GBM. Thus, accurately distinguishing between PCNSL and GBM before surgery is very important for guiding neurosurgery. At present, the spinal fluid of patients is commonly extracted to find tumor markers for diagnosis. However, this method not only causes secondary injury to patients, but also easily delays treatment. Although diagnosis using radiology images is non-invasive, the morphological features and texture features of the two in magnetic resonance imaging (MRI) are quite similar, making distinction with human eyes and image diagnosis very difficult. In order to solve the problem of insufficient number of samples and sample imbalance, we used data augmentation and balanced sample sampling methods. Conventional Transformer networks use patch segmentation operations to divide images into small patches, but the lack of communication between patches leads to unbalanced data layers. Approach. To address this problem, we propose a balanced patch embedding approach that extracts high-level semantic information by reducing the feature dimensionality and maintaining the geometric variation invariance of the features. This approach balances the interactions between the information and improves the representativeness of the data. To further address the imbalance problem, the balanced patch partition method is proposed to increase the receptive field by sampling the four corners of the sliding window and introducing a linear encoding component without increasing the computational effort, and designed a new balanced loss function. Main results. Benefiting from the overall balance design, we conducted an experiment using Balanced Transformer and obtained an accuracy of 99.89%, sensitivity of 99.74%, specificity of 99.73% and AUC of 99.19%, which is far higher than the previous results (accuracy of 89.6% ∼ 96.8%, sensitivity of 74.3% ∼ 91.3%, specificity of 88.9% ∼ 96.02% and AUC of 87.8% ∼ 94.9%). Significance. This study can accurately distinguish PCNSL and GBM before surgery. Because GBM is a common type of malignant tumor, the 1% improvement in accuracy has saved many patients and reduced treatment times considerably. Thus, it can provide doctors with a good basis for auxiliary diagnosis.
Read full abstract