This study presents an approximate numerical technique for solving time fractional advection-diffusion-reaction predator-prey equations with variable order (VO), where the analyzed fractional derivatives of VO are in the Caputo sense. Results for Ulam–Hyers stability are shown, as well as the existence and uniqueness of solutions. It is suggested to use a numerical approximation based on the shifted second kind of airfoil polynomials to solve the equations under consideration. A fractional derivative operational matrix with VO is derived for shifted airfoil polynomials, which will be used to compute the unknown function. The main equations are transformed into a set of algebraic equations by substituting the aforementioned operational matrix into the equations under consideration and utilizing the properties of the shifted airfoil polynomial along with the collocation points. A numerical solution is obtained by solving the acquired set of algebraic equations. To verify the accuracy and efficiency of the discussed scheme, several illustrative examples have been considered. The results obtained by the proposed method demonstrate the efficiency and superiority of the method compared to other existing methods.
Read full abstract