The relationship between prey consumption rate and prey concentration (functional response), and its change with growth (developmental response) were examined in the laboratory for three species of marine fish larvae: bay anchovy Anchoa mitchilli (Engraulidae), sea bream Archosargus rhomboidalis (Sparidae) and lined sole Achirus lineatus (Soleidae). The major objective was to determine relative predatory abilities of the larvae by fitting feeding rate data to developmental and functional response models. Feeding success, prey capture success, attack rates, handling times and search rates were estimated. Prey consumption rates and attack rates of bay anchovy usually were highest, but at the lowest prey level (50 per liter) first-feeding sea bream larvae had the highest consumption rate. Sea bream could consume prey at near-maximum rates at prey levels lower than those required by the other species. As larvae grew, time searching per attack decreased rapidly for all species, especially at low prey levels. Handling time also decreased, but most rapidly for bay anchovy. Search rates were highest for bay anchovy and lowest for lined sole. Bay anchovy had the best apparent predation ability, but when previous results on larval growth rates, survival rates and growth efficiencies were considered, sea bream larvae were the most efficient predators and the least likely of the three species to be limited by low prey levels.
Read full abstract