Roadway floor rock burst is an important manifestation of rock bursts in deeply buried mines. With the increase of mining depth and mining intensity, rock burst disasters in the roadway floor such as floor heaves are becoming more serious. The article investigated the roadway floor severe heave caused by floor rock burst during excavation of the No. 3401 working face, which was controlled by an anticlinal structure and deep mining in Shandong Mine, China. Firstly, by analyzing geological conditions of the working face, roadway support parameters, and characteristics of coal and rock, it was revealed that high tectonic stress and high crustal stress were main causes of the floor rock burst. Secondly, based on the Theory of Mechanics and Theory of Energy, the energy conversion process in the roadway floor was discussed, and the rock burst condition caused by elastic energy in the roadway floor was analyzed. The failure characteristics of roadway‐surrounding rock were also inspected, using a borehole recorder. The roof and sidewalls of roadway mainly contained fissures and cracks, whereas cracks and broken areas are distributed in the roadway floor. Finally, based on the deformation and failure characteristics of roadway‐surrounding rock, a method termed “overbreaking‐bolting and grouting‐backfill” was proposed to control roadway floor rock burst. The method was tested in the field, and the results showed that it could effectively control the deformation of roadway floor and rock burst, guaranteeing the stability of roadway floor. This impact control method for the roadway floor can provide a reference for the prevention and control of roadway rock burst in mines with similar geological conditions.
Read full abstract