Telomere repeat sequences are added to linear chromosome ends by telomerase, an enzyme comprising a reverse transcriptase (TERT) and an RNA template component (TR). We aimed to investigate TR in the DT40 B-cell tumour line using gene targeting, but were unable to generate TR nulls, suggesting a requirement for TR in DT40 proliferation. Disruption of one TR allele reduced telomerase activity and caused a progressive decline in telomere and G-strand overhang length. We then examined the interactions between TR and cellular DNA double-strand break (DSB) repair. Deletion in TR +/− cells of the gene encoding the non-homologous end-joining protein, Ku70, caused rapid loss of G-strand overhangs. Ku70 −/− TR +/− cells proliferated more slowly than either single mutant and showed frequent mitotic aberrations. Activation of the DNA damage response was observed in TR-deficient cells and was exacerbated by Ku deficiency, although frequent telomeric DNA damage signals were not observed until late passages. This activation of the DNA damage response was suppressed by deletion of Rad54, a key homologous recombination gene. These findings suggest that Ku and telomerase cooperate to block homologous recombination from acting on telomeres.