Abstract

Many DNA polymerases (Pol) have an intrinsic 3'-->5' exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3'-->5' Exo of Pol delta as a supplement or backup for the Rad27/Fen1 5' flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol delta mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol delta. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol delta Exo I and Exo II motifs. However, rad27-p Pol delta Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5' flaps in the lagging strand. These results suggest that the 3'-->5' Exo activity of Pol delta is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.