Although the interaction between muscle and bone has been demonstrated in various aspects, the clinical focus in the diagnosis of musculoskeletal disorders mainly lies on the skeletal assessments. Accordingly, the association between muscle function, bone mineral density (BMD), and fragility fractures remains to be further elucidated with a feasible muscle assessment in a clinical setting. Patient data (2076 patients, 1538 women, 538 men) were evaluated retrospectively from a large dual energy X-ray absorptiometry (DXA) database as well as from chair rising test (CRT) that was performed on a muscle mechanograph. To determine potential predictors of the CRT time and maximum force, a multivariate regression analysis was performed including age, DXA T-score, and body composition indices. Furthermore, CRT results were compared between non-fracture and fracture cases. We determined independent predictors for CRT time such as age, femoral DXA T-score, and total fat mass, whereas CRT force was only influenced by total lean mass. Both women and men with previous fragility fractures displayed a longer CRT time (women p = 0.009, men p = 0.001) and lower CRT force (women p < 0.001, men p < 0.001) than those with no fractures, while no clear differences in CRT results could be detected between normal BMD, osteopenia, and osteoporosis based on DXA T-scores. Our study demonstrates that in addition to the associations between chair rising time and femoral T-score assessed by DXA, low muscle strength is associated with previous fragility fractures.